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An adaptive implicit method utilizing different degrees of implicitness on a cell by cell basis 
is discussed. Techniques for solving the Jacobian of the system using an incomplete LU fac- 
torization are presented, and criteria for switching cells from explicit to implicit are 
investigated. Results for several sample problems show that substantial savings in execution 
time can be obtained with this technique. ID 1986 Academic Press. Inc. 

1. INTRODUCTION 

It is well known that explicit time differencing methods for flow problems result 
in algorithms which are computationally inexpensive per time step. However, the 
maximum stable time step may be extremely small. On the other hand, implicit 
methods allow large time steps but are much more computationally expensive per 
time step. In the following, we will describe some practical considerations arising in 
the application of the adaptive implicit method [l] to reservoir simulation. The 
adaptive implicit method attempts to minimize computation time by using an 
implicit method for a small fraction of the total number of finite difference cells, 
while using an explicit method for the remaining cells. In response to changing flow 
conditions, the degree of implicitness can change from time step to time step. 

The basic equations used for black oil reservoir simulation consist of conser- 
vation equations for oil, gas and water. The phase velocity is given by Darcy’s law 
[2]. The black oil approximation assumes that the water phase consists entirely of 
water, that the oil is non-volatile, and that gas can be present in both gas and oil 
phases [2]. This type of model is commonly used for primary depletion and secon- 
dary recovery (waterflooding). With the above assumptions, the following 
equations result: 

conservation of oil: 

* Now with Dynamic Reservoir Systems. 
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conservation of gas: 

-kj$(~+Eg,j]+R.yo+y, 
0 

,-k(Vpo-Pog)+Egi,k(Vp,-P,g) =o; 1 
conservation of water: 

~(~j+Y,-V.[~(VP,-p,r)]=o: 

where 

A., = phase mobility 

k, 
=-9 

PI 
I = oil, gas, water 

and where 

B, = formation volume factor for I = oil, water 
E, = gas expansion factor 
g = gravity vector 
k = absolute permeability 

k,, = relative permeability for 1 = oil, gas, water 
p, = pressure in phase I = oil, gas, water 
qr= well term for phase I= oil, gas, water 

R, = solution gas-oil ratio 
S, = saturation of phase Z = oil, gas, water 
t = time 

pI = density of phase Z = oil, gas, water 
q5 = porosity. 

Note that 

(2) 

(3) 

(4) 

B = cvo + ~ddglRC 
0 

c VolSTC 

B = CVwllx 
w CVWISTC 

E = [VgISTC 
g CVJRC 
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where CT/,],,- is the volume of a given mass of component I at reservoir conditions, 
and [V/l]sre~ is the volume occupied by the same mass at standard conditions. I/l+ 
is the volume of gas dissolved in the oil. The solution gas :oil ratio is defined by 

which is tabulated as an experimentally determined function of the oil phase 
pressure. The densities of the various phases are expressed at reservoir conditions as 
follows: 

PO= (bo)STC +Rs(P,~s~,~/f& 

pw = (~w)s,c/Bw (6) 

~g = E,(P,)sTc. 

The porosity 4 refers to the fraction of the volume of reservoir rock which is void 
space, and the saturation S( denotes the fraction of the void space occupied by 
phase 1. The relative permeability of phase I, krl, is an experimentally determined 
function of the saturations. A more detailed explanation of flow in porous media 
presented from a petroleum engineering standpoint can be found in Ref. [2]. 

The gas saturation is related to the water and oil saturations by 

S,=l -s,-s,. (7) 

The individual phase pressures are related through the capillary pressures P,,: 

Pw=Po-PC, 

P‘&=Po+P cg. 

These equations are discretized into finite difference form using a control volume 
approach [3], with central derivatives in space and upstream mobilities. The dis- 
cretized equations can be written as follows: 

oil equation: 

+ (J, and z flow terms) = 0; (8) 
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gas equation: 

+ q$+l+ (R,q,)y+ 1 

-2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

+ ( y and z flow terms) = 0; (9) 
water equation: 

-2 CT%+lpki+ 1/2$wi+ l/2 - T5’- 1/2ki- 1/2tiwi- l/21 
I 

+ (y and z flow terms) = 0. (10) 

In the above, the subscript i refers to the ith grid block or cell, and the trans- 
missibilities T,, Z= oil, gas, water, are defined as follows: 

To = k,/(Bo PL, 1, Tg = E,k&g, Tw = kwl(Bw~w)> 

where pL1 denotes the viscosity of phase I, T,i, I,z represents either Tli or T,i+ i 
depending on which is the upstream point for the Ith phase, and a similar definition 
holds for (R, To), + 1,2 based on the oil phase. Vi is the volume of the ith finite dif- 
ference cell, and dxi is the cell width in the x-direction. The absolute permeability is 
defined using a harmonic mean [2]: 

ki + 112 = 
(~Xi+~X~+l)k~ki+l 
dx,+,k,+dx,ki+l ’ (11) 

The superscripts N or NS 1 refer to the time level. M can be either N or NS 1 
depending on whether cell i uses an IMPES formulation (to be defined later) or a 
fully implicit formulation. 

The potential terms $ are given by 

*oi+ l/2 

,“,Yl - Pfi’ l 

= (“,,, AXi, ,),2 

dxiPZ+ 1 gxi+ 1 + dxi+ IP$ &i - 

Lixj, 1+ dXj 
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fYt:ll- P,“,’ ’ ‘gi+ 1 - ‘ti 

= (ZXi, l + dXi),2 + (AXi, 1 + AXi)/ 

Upstream directions for each phase I are determined by the sign of the associated 
potential $[. Note that g, refers to the x component of the gravity vector. The 
above equations are discretized in a cell centered (or block centered) fashion [2]. A 
discussion of the convergence properties of such finite difference approximations 
defined on irregularly spaced cell centered grids is given elsewhere [4]. 

Note that all the above equations have the form 

(change in mass in a time step) - [(flow in) - (flow out)] = 0. 

The first term in Eq. (13) is referred to as the accumulation term while the second 
term is called the flow term. Note that the accumulation term for cell i contains 
only the variables from cell i, while the flow term contains cell i variables as well as 
variables from the nearest neighbors of cell i. This type of cell connectivity gives rise 
to a five point computational molecule in two dimensions, and a seven point 
molecule in three dimensions. The variables in the flow term are discretized in time 
by first order forward (explicit) or backward (implicit) differences, as shown in Eq. 
(8)-(12). The accumulation terms are always differenced in the mass conservative 
manner shown above. Further details of the discretization method can be found 
elsewhere [l-3]. 

Three primary variables are chosen in each finite difference cell. If there is free gas 
present, then the cell is said to be saturated or below the bubble point. The primary 
variables in this case are the oil pressure po, water saturation S, and oil saturation 
S,. When no free gas is present, the saturation pressure ps replaces S, as the 
primary variable. In the absence of free gas, the cell is said to be undersaturated or 
above the bubble point. All other variables are functions of these three primary 
variables. Further details concerning switching criteria for cells crossing the bubble 
point are given in reference [S]. 

The system of Eqs. (l)-(3) is of mixed hyperbolic-parabolic type. For example, if 
S, = S, = 0, the system reduces to the familiar parabolic diffusion equation with p, 
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as the primary variable [2, 31. Another extreme is given by the one dimensional 
incompressible oil-water system (S, = 0). In this case the system reduces to a pure 
first order hyperbolic equation with S, as the primary variable [2, 31. 

If the flow terms are discretized explicitly in the single phase parabolic limit, the 
time step is limited by the compressibility of the system. For oil-water systems, this 
compressibility is normally very small 121. Consequently, all methods always take 
the oil phase pressure p. implicitly. This observation gives rise to the two widely 
used methods of time discretization noted above. In the IMPES method (Implicit 
Pressure, Explicit Saturation), the oil pressure is taken implicitly, while the 
saturations (or saturation pressures) are taken explicitly in the flow terms. Note 
that the saturations are hyperbolic-like variables. Consequently, the maximum 
stable time step for IMPES systems is limited by a throughput condition [Z, 31. 
This condition essentially requires that no more than one pore volume of fluid can 
pass through any cell during a time step [2, 31, and can be especially severe near 
wells. 

Note that the source terms in Eqs. (l)-(3), which correspond to wells, are essen- 
tially line sources in three dimensions. Thus, the predominant behavior of the 
pressure field p, near wells can be expressed as a logarithmic function of the dis- 
tance to the well center [2]. Since the fluid velocity is proportional to the pressure 
gradient, flow rates will be very high near wells [2]. Single well studies are usually 
carried out in radial coordinates. These simulations are termed coning studies since 
they show the upward movement of water and downward movement of gas towards 
a producing well. Since very small cells are used near the wellbore to give high 
resolution, a severe throughput condition results. Moreover, if free gas is present, 
the small gas viscosity can lead to particularly high flow rates [a]. In all these cases 
the maximum stable IMPES time step is unacceptably small 12, 31. To avoid these 
problems, a fully implicit method of time discretization is also widely used. This 
method requires that all three unknowns be evaluated at the new time level in the 
flow terms. Since it can be shown that simple iteration on the saturations diverges 
unless the time step is the order of the explicit time step [3], full Newton iteration 
is used to solve the discretized non-linear algebraic equations. Full Newton 
iteration has been found to have acceptable convergence properties for time steps 
several orders of magnitude larger than a typical explicit time step [6]. However, 
Newton iteration requires solution of an associated Jacobian system. For a fully 
implicit scheme, with three unknowns per cell, solution of this linear system can be 
very costly for large three dimensional problems. 

Recently, Thomas and Thurnau [l] have suggested the use of an adaptive 
implicit method to reduce execution times for black oil problems. This method is 
based on the idea that at any given time during a simulation, only a few cells need 
to be solved fully implicitly, while the majority of cells can be solved in an IMPES 
manner. 

This method had been demonstrated for some simple problems where high flow 
rates are confined to areas near the well, and Gaussian elimination is used to solve 
the Jacobian matrix. However, it is not clear that the same savings in execution 
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time can be expected if an efficient iterative technique is used to solve the Jacobian 
17-91. Also, there has been very little discussion of the criteria used to select 
implicit cells [l ]. 

Consequently, in this paper we will develop an iterative method based on an 
incomplete LU factorization [lo, 111 of the adaptive implicit Jacobian with 
ORTHOMIN [7] acceleration. This method uses minimal storage (only non-zeros 
stored) and so can result in a substantial storage for large problems. Two types of 
preconditioning have been developed, one based on a second degree, natural order- 
ing and the other using red-black reduced system preconditioning [a, 91. 
resulting incomplete factorization code can solve completely general sparse systems 
with a variable number of equations per cell. Since the code is completely general, 
other orderings or degrees of factorization are trivial to implement. Solution of 
problems with multi-block well completions [ 121 or local mesh refinement (131 
can also be solved with such a general code. 

A systematic discussion of the methods used to select implicit cells is also presen- 
ted. In many cases, the execution times are surprisingly insensitive to the choice of 
AIM (adaptive implicit) parameters. 

2. ITERATIVE SOLUTION OF THE AIM JACOBTAN 

The discretized equations of the adaptive implicit method (AIM) were presented 
in Eq. (8 )( 12). In the following, we will assume that there are only two types of 
cells. These will be either fully implicit, in which case (p,, S,, S,) or (p,, ps, S, ) 
are solved implicitly, or IMPES, in which case only p0 is solved implicitly in the 
flow terms. We do not consider the case where only two variables are taken 
implicitly, for reasons to be discussed later. In the case of an IMPES cell. the 
Jacobian for the three flow equations (oil, gas, water) is constructed as usual. Note 
that saturation (or saturation pressure) derivatives appear only in the diagonal sub- 
matrix. Suppose that an IMPES cell i is a neighbor of a fully implicit cell k. Then, it 
is easy to see that the equations for cell i contain derivatives with respect to Sz + 1 s 
S,“$+ ‘, only in the diagonal block. These equations do have off diagonal derivatives 
with respect to S,, N + i , S&+ I, however, since cell k is an implicit cell. Turning atten- 
tion to the equations of cell li, there are no derivatives with respect to 5’:’ ‘, Sz,’ 1 
(cell i is IMPES). There are derivatives with respect to SE- I, 5:; 1 coming from 
both the diagonal accumulation term, and the off-diagonal flow terms. 

Another way to visualize the Jacobian is to imagine constructing the Jacobian as 
a block matrix by columns. Consider cell i. The material balance equations for cell i 
contain accumulation terms (viz. Eq. (13)) which contain all the primary variables 
evaluated at the (N+ 1) time level (see Eqs. (8). ( 12)). Consequently, the diagonal 
submatrix is in general full, since derivatives with respect to (pc + ’ , Sz+ I, St,+ ’ ) 
are present. If cell i is IMPES, there are no additional derivatives in the diagonal 
submatrix with respect to (SC+ I, Sz,+ 1 ). If cell i is fully implicit, there are 
additional derivatives with respect to (St + ’ , S,“,+ ’ ) in the diagonal submatrix com- 
ing from the flow terms, since all variables evaluated at cell i are taken at the M- 
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N+ 1 time level. Now consider the Jacobian entries in the same ith column above 
and below the ith diagonal submatrix. The non-zero submatrix entries correspond 
to derivatives of the material balance equations for neighbors of cell i with respect 
to (PO, N + I, SC + I, ,Sci+ l ). If cell i is an IMPES cell, the corresponding submatrix will 
only contain a column corresponding to derivatives taken with respect to pE+ ‘, 
recalling that Eqs. (8)-(12) show that pg” appears in the flow equations for all 
neighboring cells. All properties which are functions of (S,,, SOi) appear evaluated 
at the A4 = N time level in all equations for cells which are neighbors of cell i, and 
do not generate Jacobian terms. Conversely, if cell i is a cell receiving a fully 
implicit treatment, the quantities which are functions of (SOi, S,,) in the equations 
for neighboring cells are all evaluated at time level M = N + 1. Consequently, all 
submatrices lying above and below the diagonal submatrix are potentially full, as 
derivatives with respect to pt+ l, St+ l, and St;+ l could appear. 

After construction of the Jacobian system, each block row of the matrix is scaled 
by the corresponding inverse of the diagonal submatrix. For implicit blocks, this 
procedure provides a scaling for the solution algorithm. For IMPES cells, this 
operation effectively eliminates the IMPES cell saturation variables from the 
system. This system reduction can be seen as follows. If cell i is IMPES, then after 
diagonal scaling, the only non-zero entries in the columns corresponding to 
(SE+‘, sg+’ ) appear on the diagonal of the diagonal submatrix for cell i. This 
means that the two resulting equations containing (SC’ ‘, St,,’ ’ ) derivative depem 
dence can simply be left out of the Jacobian system, as no other equations show 
dependence on (St + r, St,+ l ) derivatives. After solving for the other primary 
variables, (Sg + l, Stl+ ’ ) can be determined by back substitution. 

As a further illustration, consider the simple two dimensional grid in Fig. 1, with 
the pattern of implicit-IMPES cells as shown. After leaving out the equations con- 
taining IMPES cell saturation variables (as explained above) and performing 
diagonal submatrix diagonalizations, the Jacobian has the structure shown in 
Fig. 2. 

It is now possible to construct a block incomplete LU factorization of the 
Jacobian. In the case of the fully implicit Jacobian, all blocks are 3 x 3 [6, 71. 
However, for an AIM Jacobian, the blocks are either 3 x 3, 1 x 3, 3 x 1, or 1 x 1. As 
long as the incomplete factorization is carried out in a block sense, with due regard 

FIG. 1. Two dimensional example with a typical fully implicit-IMPES pattern. 
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FIG. 2. Jacobian incidence matrix for the example of Fig. 1. 

for matrix multiplication with non-square matrices, then the incomplete fac- 
torization can be constructed as described previously [7-91. 

The solution algorithm essentially consists of three parts. The first part entails a 
symbolic factorization. Since the symbolic factorization is done in a block sense, it 
is independent of the degree of implicitness. Consequently, the symbolic fac- 
torization need only be done at the beginning of the simulation. The second part of 
the algorithm consists of pointer adjustment to account for the degree of implicit- 
ness (recall that only non-zeros are stored). This pointer adjustment is com- 
paratively cheap once the symbolic factorization is carried out. Pointer adjustment 
must be carried out every time the degree of implicitness changes, which is quite fre- 
quently (every few time steps). The third part of the algorithm is the usual numeric 
incomplete factorization, followed by the repeated iterative cycle of forward and 
back solve and ORTHOMIN acceleration [7-91. 

Note also that using a cell by cell approach for the incomplete factorization 
rather than a line by line approach requires less pointer storage. In general, for a 
fully implicit Jacobian, a line by line approach would require nine times (3 x 3) as 
much pointer storage as a cell by cell approach. 

The types of incomplete factorization used in this study were a second degree 
naturally ordered factorization, and a reduced system precondition using red--black 
ordering. These ILU factorizations have been discussed in detail elsewhere [X? 91. 
As mentioned previously, the ORTHOMIN algorithm [7] is used to accelerate the 
iterative method, since the Jacobian is in general non-symmetric. 
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3. SELECTION 0~ IMPLICIT CELLS 

Before discussing the criteria for selecting implicit cells, a short digression is 
necessary. Normally, a black oil run is started by specifying certain well constraints. 
The first few time steps after a well opening require small time steps in order to 
resolve transients. Thereafter, the time steps can be increased quite rapidly until the 
next well change is encountered (assuming that no stability problems arise). The 
time step selector used in this paper was of the form 

AtN+’ =AtN 7 
min over variables, cells 

(14) 

where Del(Z)N is the maximum change in each basic variable over the previous time 
step [2]. The parameter Dnor,(Z) is the desired value of a change in a variable over 
a time step. The ratio AtN+ ‘/AtN is bounded between 0.5 and 5. Typical values for 
the norms are 

D,,,,( 1) = 500 psi for pressure 

D,,,,(2) = 500 psi for saturation pressure 

D ..,,(3) = 0.10 for oil, gas, water saturations. 

These time step selection norms will be discussed in the following 
The criterion for selection of implicit cells described by Thoma.s and Thurnau 

[l] was based on a specified saturation or pressure change threshold from a 
previous iteration. It is immediately obvious that such criteria can only be used to 
switch cells from IMPES to fully implicit, and not vice versa. This is because a fully 
implicit cell can have an extremely large throughput, and yet the saturation changes 
can be small. It is clear that large instabilities would ensue if such a cell was 
switched to IMPES. However, the limitation of switching only from IMPES to fully 
implicit is not necessarily too restrictive for practical problems. In a typical black 
oil run, several small time steps are taken after an initial well opening, and thereaf- 
ter the time steps increase rapidly until a well change is encountered, and the cycle 
of small time steps increasing to large time steps is repeated. Consequently, we will 
adopt the following strategy. After each well change (which requires small time 
steps) only a few cells are set fully implicit, such as well cells, nearest neighbors 
and/or next nearest neighbors. Once a cell is switched to fully implicit, it is not reset 
until the next non-trivial well change. 

Nevertheless, it is still not obvious that simply switching cells to fully implicit 
when large saturation changes are observed will capture all instabilities. Clearly, 
extreme instabilities with large changes are easily discerned with such a strategy. 
However, slowly growing instabilities may not be detected. Consequently, in order 
to have a reasonable chance of detecting slowly growing instabilities, the saturation 
change thresholds must be significantly smaller than the norms which control time 
step selection (Eq. (14)). This strategy is essentially conservative since saturation 
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changes of this magnitude are necessary for instability but not sufficient. In line 
with this conservative strategy, an IMPES cell is switched to fully implicit in all 
three variables. This avoids problems which could occur, for example, with large 
saturation pressure changes in a cell just before a gas switch is encountered ES]. 

The above method was developed after numerous runs were made with a lixe 
implicit-TMPES pattern and the results compared with those from a fully implicit 
run. Even though cumulative variables such as oil production and water production 
were in good agreement in many cases, small instabilities were observed if not 
enough fully implicit cells were used. These instabilities sometimes caused repeated 
time steps later in the run. Consequently, we have attempted to use the most con- 
servative strategy possible which will still allow a significant reduction in run time. 

Thus, our strategy uses mostly IMPES cells for the small time steps after a well 
change, and as the time steps are increased, cells are switched to fully implicit as 
saturation and saturation pressure changes start to exceed a small preset fraction ui 
the time step selection norms. A fraction of 20 to 25 % was found to be suitable for 
most applications. 

The above strategy was augmented by a facility that caused neighbors of 
switched ceils to also switch if their changes exceeded a slightly smaller threshold 
value. This facility helped to prevent the appearance of isolated explicit cells in 
otherwise fully implicit regions. 

This method can also be extended to solve the fully implicit equations in all cells 
at reduced cost. In this case the residual is evaluated using the fully implicit dis- 
cretized equations. However, the saturation derivatives of the flow terms are 
ignored (for the purposes of Jacobian construction) in cells where saturation 
changes are small. This approximate Jacobian will have the same structure as the 
AIM Jacobian, and hence will be less expensive to solve than the full Jacobian. 
Note that this is not full Newton iteration. This is in contrast to the true AI 
method which uses explicit variables in IMPES cells, and results in full Newton 
iteration. 

The iterative solution method described previously was incorporated in a black 
oil reservoir simulator that provides the mechanism for equation formation using a 
variable implicitness formulation. As noted previously, the three conservation 
equations for each cell were either solved fully implicitly, or in an IMPES fashion, 
using full Newtonian iteration. A variable bubble point formulation, using 
saturation pressure, was incorporated. The model ‘was used for a variety of 
simulation problems, including the problems presented by Odeh Cl41 and Chap- 
pelear and Nolen [l5] in the first and second SPE comparative solution projects. 
The results of these computations are presented here, including CPU (central 
processing unit) times for a Honeywell DPS-8. These times are only accurate to 
15% and include time spent for data input and output. One set of times is also 
given for a CRAY-1s. 

It was generally found that a 40% reduction in computing time could be realized 
by the adaptive implicit approach, as compared to simulations performed with all 
cells initialized to the implicit state (fully implicit), when using the new iterative 
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matrix solution algorithm. Generally, the computing times, and the results were not 
sensitive to the choice of the switching threshold. Also, if the adaptive implicit 
Jacobian was viewed as an approximate replacement for the matrix generated by 
the fully implicit equations, and the fully implicit solution was solved for using this 
approximation, it was found that a solution was obtained in times comparable to 
the adaptive implicit approach. There was again little difference between the fully 
implicit solution and the adaptive implicit solution. 

The results for the first SPE comparative solution project are given in Table I. 
This problem was a gas injection problem on a 10 x 10 x 3 grid. Complete details of 
the description of this problem can be found in Ref. [14]. Neighbors and next- 
nearest neighbors of well cells were set implicit initially, as were the well cells them- 
selves. A maximum time step of 250 days was used. Timing results are shown for 
various levels of the threshold parameters, as well as for a fully implicit simulation. 
Also, timings are shown for two cases where the fully implicit equations were solved 
using an adaptive implicit Jacobian. Material balance calculations were performed 
for each component at the end of each time step as follows: (initial mass + 
injection - production - calculated mass)/max (injection, production). Material 
balance errors were always less than 8 x lop3 and final cumulative productions dif- 
fered by less than 4 % for all cases. A 40 % reduction in CPU time for the adaptive 
implicit cases, as compared to the fully implicit case 4, and the insensitivity of 
timings to the threshold size, can be seen. Also, it does not take appreciability 
longer to solve the fully implicit equations by use of the adaptive implicit Jacobian 
than it does to obtain the adaptive implicit solution. 

It should be noted that approximately two-thirds of the cells were implicit at the 
end of each adaptive implicit simulation. However, the time weighted fraction of 
cells implicit did not exceed 40 % for case 1 and 33 % for cases 2 and 3. Thus, even 

TABLE I 

Results for the First SPE Comparative Solution Project 

Time step selection norm: pressure 1000.0 psi 
saturation pressure 1000.0 psi 
saturations 0.20 

Case 

Saturation 
pressure 

threshold (psi) 
Saturation CPU time (set) 
threshold (Honeywell DPS-8) 

1 125.0 0.025 1285 
(1336”) 

2 250.0 0.050 1239 
(1358”) 

3 600.0 0.150 1334 
4 Fully implicit throughout 2178 

u Fully implicit solution found using adaptive implicit Jacobian. 
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though the top layers of the reservoir contain mostly mobile gas, and are made u 
of mostly implicit cells at the end of the simulations, the simulations required only 
one-third of the cells implicit, on average. 

The results for the second SPE comparative solution project are given in 
Table II. This problem was a single well cross-sectional coning study in radial co- 
ordinates on a 10 x 15 grid. Further details can be found in Ref. [15]. Neighbors 
and next-nearest neighbors of the producing well blocks were set implicit initially: 
as were the well cells. All cells reverted to IMPES at the 720.0 day well ch 
which represented the major well change in this problem, in accordance wit 
strategy described before. (It should be noted that this resetting had little effect on 
the solution or computation times, however.) Timings are shown for various levels 
of the threshold parameter, as well as for a fully implicit simulation. (Saturation 
pressure control had no effect on this coning problem.) Also, timings are shown for 
two cases where the fully implicit equations were solved using an adaptive implicit 
Jacobian. Material balance errors were always less then 5 x IO -4 and final 
cumulative productions differed by less than 4% for all cases. A 40% reduction of 
CPU time for the adaptive implicit case 1, as compared to the fully implicit case 4, 
is again evident, and a 30% reduction holds for case 2. The saturation threshold of 
0.01 (20 % of the associated norm) yields the best performance for this problem 
(case 1). 

Case I had a time weighted fraction of cells implicit value of 20% for this coning 
problem, with no more than half the cells fully implicit at any time. A total of 43 
time steps were required, involving 145 Newton iterations. It should be again noted 
that the additional time required to solve the fully implicit equations using an adap- 
tive implicit Jacobian is small. 

TABLE II 

Results for the Second SPE Comparative Solution Project 

Time step selection norms: pressure 250 psi 
saturation pressure 250 psi 
saturations 0.05 

Case 
Saturation CPU time (set) 
threshold (Honeywell DPS-8) 

1 0.010 313h 
(349”) 

2 0.025 313 
(388”) 

3 0.050 418 
(418”) 

4 Fully implicit throughout 513 

a Fully implicit solution found using adaptive implicit Jacobian. 
h This run required 19.2 set on the CRAY-IS. 
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The CRAY-1S time of 19.2 seconds for this problem compares favourably with 
times reported in [ 151. It should be noted that the coding of this model makes no 
special provision for vector machine architecture, however, and that full Newtonian 
iterations and a complete variable bubble point formulation were always used. The 
latter considerations can lead to greater computing times for this model when com- 
pared to times for codes that are vectorized, or that take special advantage of the 
stability of the water zone and the saturated nature of the problem. 

The linal problem involves a water injection scheme during which bubble point 
transitions occur. The geometry selected is as for the first SPE comparative solution 
project data, as are most of the fluid properties. It is assumed now that the reservoir 
is quite undersaturated (p, = 3000 psi), while the initial reservoir pressure is 
retained at p0 = 4800.0 psi. Quadratic water-oil relative permeability curves are 
used and water is injected into cell (10, 10, 3) at a rate of 20,000 bbl/day. The same 
production well is used. The simulation covers a period of 3650.0 days, during 
which time free gas appears near the production well. A constraint violation near 
900 days causes the production well to be operated as a constant bottom hole 
pressure well after this time. 

Some timing results for this problem are shown in Table III. Case I began with 
the usual neighbors and next-nearest neighbors of well cells implicit (20 implicit 
cells) and case 2 began with 54 cells implicit in a neighborhood of the wells. The 
timings show that switching thresholds and initial setting strategy have little effect 
for this problem. A 45550% reduction in time is observed as compared to a 
simulation performed with all cells implicit (case 3). The time weighted fraction of 
cells implicit for case 1 did not exceed 20%. Material balance errors never exceeded 
3 x 10 -3 for all cases, and total production values differed by less than 1%. 

Case 4 describes results obtained by fixing only the production cell implicit and 
otherwise using an TMPES approach. The maximum time step was reduced to a 

TABLE III 

Results for a Water Injection Scheme 

Case 

Time step selection norms: pressure 1000.0 psi 
saturation pressure 1000.0 psi 
saturations 0.20 

Saturation 
pressure Saturation CPU time (sec.) 

threshold (psi) threshold (Honeywell DPS-8) 

1 200.0 0.050 359 
2 300.0 0.100 331 
3 Fully implicit throughout 653 
4 IMPES throughout” 1077 

a Max time step 30 days. 
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size suitable for an IMPES simulator. It should be noted that if the production cell 
is not taken implicit (essentially defining a fully implicit well formulation), the 
simulator could not complete the problem in a reasonable time. 

In order to verify that the maximum stable time step was used for the IMPES 
run, the maximum time step was doubled to 60 days. A large number of repeat time 
steps were observed, indicating that the maximum stable time step was exceeded. 

The advantages of using an implicitexplicit approach, or even a fully implicit 
model, over IMPES, can be seen. In fact, the IMPES a.pproach required three times 
as much time as the adaptive approach, and half again as much time as the fully 
implicit simulation. 

Table IV summarizes some further information concerning the adaptive implicit, 
fully implicit and IMPES cases. Even though the IMPES method only uses 2.4 
iterations per time step and its time per iteration is least, the large number of time 
steps required lead to large cost. The fully implicit method’s advantage derives from 
its ability to take large time steps, when compared to the IMPES approach. Fin- 
nally, the adaptive implicit method exhibits a cost per iteration near that of the 
IMPES appraoch, but still can take fully implicit time steps, leading to a par- 
ticularly low overall cost. 

The first SPE problem [14] was rerun using the same parameters as Case 1. 
Table I, with the reduced system red-black ordered preconditioning. This precon- 
ditioning reduced the run time by approximately 5 %. Although the reduced system 
ILU [S, 9] was more efficient on some difficult time steps, there were many 
relatively easy time steps where the increased set-up costs of the reduced system 
ILU did not pay off. We have found that for practical problems, which have orders 
of magnitude differences in time steps, the second degree natural ILU [7-9] seems 
to be the most efficient. 

The test problems presented above are quite difficult in the sense that a 
reasonable fraction of the cells become implicit at the end of the run. However, we 
have run many practical simulations on field scale problems, in which only the well 
cell and nearest neighbors become implicit. In this case, the CPU savings are much 
larger than the 40-50% indicated above. With the AIM technique, it has become 
possible to run fairly large problems in a reasonable time on small machines with 
limited memory. 

TABLE IV 

Results for a Water Injection Scheme 

Total time steps 
Total iterations 
Iterations/time step 
Total time (set) 
Time/iteration (set) 

Implicit-explicit Fully implicit IMPES 
(Case 1) (Case 3) (Case 4 ) 

20 19 12s 
17 65 302 
3.8 3.4 2.4 

359 653 1077 
4.7 10.0 3.6 
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5. CONCLUSIONS 

An iterative matrix solving technique has been developed for adaptive implicit 
Jacobian matrices. This technique is based on an incomplete LU factorization and 
is related to methods that have already proven robust and efficient for fully implicit 
reservoir simulation and for IMPES simulators [7-91. This method uses a cell by 
cell approach which minimizes the work required for symbolic factorization. A 
second degree natural and reduced system preconditioning were used. The techni- 
qtie uses minimal storage. The new method consistently shows at least 40% 
improvement in total computing time when compared to fully implicit simulations, 
for a variety of black oil problems. It has also been shown that the new method can 
be used to generate an approximate Jacobian. This approximate Jacobian can be 
used to solve the fully implicit reservoir equations using less time than with the fully 
implicit Jacobian. 

The conservative switching strategy described above, which is based on the 
observations of Thomas and Thurnau [ 11, provides stable simulations. However, it 
is still capable of attaining the significant computing time reductions noted above. 
The choice of parameters proved to be not particularly critical for typical black oil 
problems. 

As is well known, and reiterated by the water injection problem described earlier, 
fully implicit simulators can outperform IMPES simulators on many problems due 
to their ability to take large time steps. Alternately, the low cost of the IMPES 
approach makes this technique useful for simple problems or small time steps. The 
adaptive implicit method combines these approaches and compensates for 
inappropriate time step norm selection if the switching strategy described above is 
used. If norms are chosen small, but the problem is not particularly difficult, only a 
few cells should switch implicit and the simulation can take advantage of many cells 
where an IMPES formulation is used. If norms are chosen large for a somewhat dif- 
ficult problem, the model will revert to a fully implicit formulation and thereby will 
take the largest time steps possible. 

The adaptive implicit method using the new iterative solver, with its inherent 
benefits for larger problems, gives a stable simulation procedure that offers 
significant computing cost reductions over other techniques. 

ACKNOWLEDGMENTS 

This research was supported by the General Members of CMG. The authors are indebted to A. Behie 
for many useful discussions. 

REFERENCES 

1. G. W. THOMAS AND D. H. THURNAU, Sot. Pet. Engrg. J. 23 (1983), 760-768. 
2. K. AZIZ AND A SETTARI, “Petroleum Reservoir Simulation,” Applied Science, London, 1979. 



ADAPTIVE IMPLICIT METHODS 281 

3. D. W. PEACEMAN, “Fundamentals of Numerical Reservoir Simulation,” Elsevier, Amsterdam, 1977. 
4. P. A. FORSYTH, JR., AND P. H. SAMMON, submitted for publication. 
5. P. A. FORSYTH AND P. H. SAMMON, Sot. Pet. Engrg. J. 24 (1984), 505-507. 
6. A. D. K. Au. A. BEHIE. B. RUBIN, AND P. K. W. VINSOME, “Techniques for Fully Implicit Reservoir 

Simulation,” paper SPE 9302, presented at the Fall Meeting of SPE, Dallas, 1980. 
7. A. BEH~E AND P. K. W. VINSOME, Sot. Pet. Engrg. J. 22 (1982)., 659-668. 
8. A. BEHIE AND P. FORSYTH, SIAM J. Sri. Statist. Cornput. 5 (1984). 543-561. 
9. A. BEHIE, D. COLLINS, AND P. FORSYTH. J. Comput. Methods Appl. Mech. Engrg. 42 (1984), 257-299. 

10. J. A. MEIJERINK AND H. A. VAN DER VORST, Math. Comp. 31 (1977). 148-162. 
11. D. S, KERSHAW, J. Comput. Phys. 26 (1978), 43-65. 
12. R. H. TRIMBLE AND A. E. MCDONALD, Sot. Pet. Engrg. J. 21 (1981), 454458. 
13. P. QUANDALLE AND P. BESSET, “The Use of Flexible Gridding for Improved Reservoir Modelling,” 

paper SPE 12239, presented at the Seventh SPE Symposium on Reservoir Simulation, San Fran- 
cisco, 1983. 

14. A. ODEH, J. Pet. Tech. 33 (1981), 13-25. 
15. J. E. CHAPPELEAR AND J. S. NOLEN. “Second Comparative Solution Project: A Three Phase Coning 

Study,” paper SPE 10489, presented at the Sixt SPE Symposium on Reservoir Simulation. New 
Orleans, 1982. 


